HIERARCHY METHODS FOR RANDOM VIBRATIONS
OF ELASTIC STRINGS AND BEAMS

by
Charles W, Haines*

1. Introduction

Traditionally the normal frequencies and normal modes of vibration have
played a very important role in the solution of many non-homogeneous
boundary value problems in mathematical physics and mechanics, These
normal modes are the solutions to eigenvalue problems which have been
derived using various assumptions to simplify the differential equations and
boundary conditions under consideration, Recently [1,2}** attention has
been given to various vibration problems in which the assumptions concer-
ning some physical properties have been relaxed by considering them to
be represented by stochastic variables. In recognition of this fact, certain
of the coefficients appearing in the equations are assumed to be random
functions or random variables, thereby making the solution a random func-
tion. The object, then is to determine as much statistical information as
possible concerning the solution,

The analysis undertaken here involves the determination of various mo-
ments of the eigenfunctions. There are two methods of doing this., One
method is to solve for the eigenfunction as accurately as possible and then
to determine the moments, The second method is to average the equation
first and then to solve these for the moments. The first is an "honest"
method, whereas the second is a ''dishonest" method [3]. This terminology
arises from the fact that the equation for one moment of the eigenfunction
leads to an infinite hierarchy of equations, and to obtain a finite set of
equations, certain unjustified assumptions must be made. One of the main
advantages of this "dishonest'" method is that no assumptions on the small-
ness of the stochastic variable need be made to obtain very good appro-
ximations of the various moments over a wide range of values of the sto-
chastic variable.

Hierarchy equation techniques have been widely used in the study of ran-
dom wave propagation problems [3,4 ] and random initial value problems
in general [5] However, their application to eigenvalue problems is con-
siderably complicated by the fact that in addition to the random eigenfunc-
tions the eigenvalues appear as random variables., This causes no parti-
cular difficulties in the first approximation, it is only in the second and
higher approximations that we find that non-trivial closure assumptions
must be made.

The analysis of hierarchy techniques as applied to stochastic eigenvalue
problems is carried out on an example problem for which exact results
and "honest'" approximations are available for comparison. In the next sec~
tion the hierarchy is derived and a first approximation for the mean value
of the eigenfunctions u (denoted by <u>) is obtained by retaining only the
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first equation of the infinite hierarchy. In section three the closure as-
sumptions needed to insure an improved estimate for <u> are discussed
along with a possible solution to the resulting determinant eigenvalue pro-
blem, Section four contains a-discussion of the hierarchy for the deter-
mination of higher moments of the eigenfunctions and finally in the last
section we discuss possible closure assumptions for some other typical
eigenvalue problems.

2, The Hievarchy and First Approximation

The random vibration problem that we will use for the application of
hierarchy techniques is that of the vibration string held fixed at one end and
with an elastic constraint at the other. Mathematically, the normal modes
and frequencies of such a vibration will be given by the eigenfunctions and
eigenvalues of the problem:

u" ®) + Aux)=0
u(0) = 0 (2.1)
a (1) + eull) = 0,

where 1is a constant depending on the elastic constraint at x = 1. In the
following work we will assume ¢ is a random variable for which the pro-
bability density function is known, For purposes of comparison to appro-
ximate solutions we will use the normalization condition u* (0) = 1, It
should be mentioned that the reasons for picking this particular example
are that it is typical of eigenvalue problems with the random function ap-
pearing in the boundary conditions aund the exact solution and perturbation
series solution are easily obtainable for comparison.

In order to find an estimate of the first moment of u(x) directly from
the equations (2.1) we must consider the set of equations:

cu>''(x) +<au> (%)
<u > (0)
u>'(l) + <eu> (1)
<u>'(0)

(2. 2)

n W nu

l—‘OOO

which are obtained from (2.1) by taking the mean value of each equation.
In arriving at (2.2) we have assumed that the integral over the probability
space and the differentiation with respect to x can be interchanged. Since
the integrations involved are over finite intervals for applications used
here, this assumption would not be hard to satisfy. Similar assumptions
will be used throughout this paper. Equations (2.2) contain the two second
order moments:<iu> (x) and<eu> (1). To obtain equations for these quan-
tities, multiply the equations (2.1) by A and €, respectively, and average.
We then obtain the two sets of equations:

<> "(x) +<A%u>(x) = 0
<Au>(0) = 0 (2.3)
<hu> (1) +<Areux(1) = 0
and
<euy> "(x) +<Areu>(x) = 0
<eu>(0) =0 (2.4)
<eu> '(1) + <€®ux(1) = 0

These equations, 1n turn, contain the three third order moments: <\us (x),
deu> (x), and <e?u> (1), which must be determined in the next set of
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equations of the hierarchy. Equations (2.2) are the first member of the
hierarchy, and equations (2.3) and (2.4) are the second member,

To close the hierarchy at the first member, we must in someway replace
<Au> and <eu» by quantities involving first order moments only. The sim-
plest assumptions are to assume < Au> = <A><u> and <eu> = <e><u>. These
assumptions, while clearly not altogether accurate, do permit the deter-
mination of <u>, Under these assumptions, (2.2) becomes

<u> "(x) +<ow>(x) =0
<u> (0) = 0 2. 5)
<u> '(1) + <e><u> (1) = 0 '
<a>1(0) = 1.
The solution of (2.5) is easily obtained as
Lu> (x) = <A>°M2 gin <>V2 g, (2.6)
where, for <e># 0,
A2 = ~ce> tan <012, (2.7)

Thus, not only do we get an approximation to the mean value of u(x), but
also an approximation to the mean value of A,

4 TERM 3 TERM 2 TERM

o EXACT HIERARCHY  PERT. PERT. PERT.
.5 2.935 2,943 2.935 2,933 2.9617

1 3.346 3.313 3.3417 3.332 3.467
2 4,029 4,116 4,044 3.921 4,467
4 5,012 5,239 5,238 4,306 6.4617
8 6.172 6.607

16 17.283 7.865

32 8.178 8,754

50 8.617 9.128

TABLE I: A comparison of< A >for e umiformly distributed
between 0 and «.

The validity of the above unjustified assumptions can be seen in Table I
in a numerical comparison of < A> as given by (2.7) to the exact value
(computed numerically to four digits) and to the value given by a pertur-
bation series approximation, an "honest" technique. For this comparison
€ is assumed to be uniformly distributed between 0 and o. For the dis-
cussions and comparisons in this paper only the first eigenvalue and eigen-
functions will be considered. All results and techniques discussed here
can be extended to higher eigenvalues and eigenfunctions, A similar com-
parison is made for <u> (x) as given by (2.6) in Table II, In this case €
is assumed uniformly distributed between 0 and 1.

The numerical results given in Tables I and II show several advantages
of the hierarchy technique over perturbation techniques. A close look at
both tables shows that a one member hierarchy gives approximations that
are better than a two term perturbation series approximation for all values
of @ given and better than a three term perturbation series approximation
for all @ greater than two. Further, in general a one member hierarchy
is no more difficult to use than possibly a two term perturbation or cer-
tainly a three term perturbation series. Thus, for the same or less work
than with a perturbation series, better results may be obtained by using
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3 TERM 2 TERM
X EXACT HIERARCHY  PERT. PERT.
0 0 .0 .0 .0
.1 .0994 L0994 .0994 . 0992
.20 ,1956 . 1955 . 1956 L1954
.3 .2852 . 2850 . 2852 . 2846
.4 .3683 . 3650 ., 3654 . 3639
.8 .4332 . 4326 .4336 .4306
.6 .4867 . 48517 .4874 .4821
ST .5241 .5225 .5252 .5167
.8 L5440 . 5411 . 54569 . 5329
.9 .5459 . 5426 . 5489 .5299
1.0 .5296 . 5254 . 5343 .2076

TABLE II. A comparison of < u >(x) for ¢ uni-
formly distributed between 0 and 1.

hierarchy techniques.

A second, and perhaps more important, result is that the approxima-
tions as given in (2.6) and (2.7) are good for all <e€>, whereas the finite
perturbation series approximations get continuously worse for larger epsi-
lon, no matter how many terms are kept. This result is typical of solu-
tions arising from such dishonest techniques as those used here and can
be partly accounted for by the fact that nowhere in the above work did we
assume that € or <€> had to be small,

Further justification of the assumptions used in (2.5) are obtained when
the solutions as given by (2.6) and (2.7) are expanded in a power series
in <e>, yielding respectively

<u> (%) = u (x) + u (x) <e>+ u,(x) <€’ + ... (2. 8)
and
- 2
<AD> = KD + Kl <e>+)t‘2 <eS" + ... (2.9)
The perturbation series solutions are
<u> (x) = u (x) + u; (x) <e>+ u, (x) <e’> + ... (2.10)
and
2
<A> = )x0+)x1<e>+ A, <E€>+ ..., (2.11)

which, of course, are correct through the highest order terms kept. Thus,
we see that (2.6) and (2.7) can be justified through orderg € > terms, as
the two sets of coefficients u;(x) and A; appearing in (2.10) and (2.11) are
the same as those appearing in (2.8) and (2.9). This also explains, in
part, why the results as given in Tables I and II are better than a two
term perturbation series.

3. The Second and Higher Membevs of the Hievarchy

The next step in the method of hierarchy equations is to consider clo-
sing the infinite set of equations at the second member of the hierarchy.
The second member for the eigenvalue problem under consideration con-
sists of the two sets of equations (2.3) and (2.4). These two sets of equa-
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tions contain the three third order moments <e?u> <A%?u> and <X\eu>,
which must be expressed in terms of the three lower order moments <u>,
<>, <eu>. When this is done, the resulting equations along with (2.,2)
result in a consistent system for the estimates of <u> (x), <€u> (x), and
<Ai> (x). The situation occurring here is much more complicated than for
a stochastic initial value, problem [5], which has only one third order
moment in the second member.

To determine what assumptions, if any, will give improved results, we
must analyse more carefully the assumptions made in the last section
when solving the first member. At that time we made the assumptions

<Au> = <AA><u> (3.1)

and

Leuy = <€> Lu>. (3.2)

If we use perturbation series for A and ufx) and calculate the above pro-
ducts, we find that both (3.1) and (3.2) are correct to <e€> terms, This
not only tells us why <A> and <u> (x) as given in the last section were
correct to<e> terms, but also tells us that in order to guarantee an im-
provement in the means of u(x) and A we must make assumptions on the
third order moments that are correct to terms involving <€,

By looking at the appropriate perturbation series, it is possible to show
that the following equalities for the third order moments are valid through
<e?> terms,

<efu> = < <u>; (3.3)

<A%u> = <AB><ud+ 20 <A> - 2, (3.4)
and

<AeUuD> = <AES> US> T KAD>CEuD> - <> <aud> (3.5)

Using (3.3) to (3.5) in (2.2) to (2.4), we obtain a system of three coupled
boundary value problems. If we let m(x) = <u> (x), n(x) = <€u> (x) and
p(x) = <au> (x), then we can write them as

m'(x) = -p(x)
m(0) = 0 (3.6)
m!(1) = -n(l)
n''(x) + <A>n(x) = <e>p(x) - <Ae> m(x)
n(0) = 0 (3.7)
n'(t) = -<€?>m(l)
and
p'(x) + 24> p(x) = (2<1>° - <A3) m(x)
p(0) = 0 (3.8)

p'(1) -<e> p(l) = -AA> n(l) - <xe> m(l).

‘The solution, if it exists, to the above set of equations will yield ap-
proximations for m(x), n(x), and p(x) which are correct through <e?%
terms, However, there are complications in the solution of the above
system as there are three unknown parameters <A2> <el> and <> ap-
pearing in the equations. The three differential equations can be solved
and the three boundary conditions at x = 0 used to eliminate three of the
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six unknown constants. The three boundary conditions at x = 1 then yield
only one ''eigenvalue' equation which is a function of the three unknown
parameters. Thus, we are not able to obtain a solution unless we can obtain
approximations for two of the unknown parameters from another source.
Whatever approximations that are used must be valid through <€?> terms
to ensure that <u> (x) will be valid through <e€2> terms.

One such approximation that can be used is to assume

<2+ 0?2 0,2 (3.9)

P)
<AE> .

and

1t

<EAD>
where Ay = g—)é- (0) and 052 is the variance of ¢. Both (3.9) and (3.10) are

correct up to terms of order <e2>and can be derived using a perturbation
series. These assumptions were used in the systems (3.6) to (3.8) to
yield a very complicated eigenvalue equation for < A> This latter equation
was solved numerically, yielding the estimates of <A>as shown in Table III.
The estimates for<A> from the second hierarchy can now be used in (3.9)
to yield estimates for the second moment of A. These are shown in Table IV.
In both Tables we again assume € uniformly distributed béetween 0 and a.

<e><A>+ A, g% (3.10)

E
o EXACT 2nd HIERARCHY  1si HIERARCHY 'El :
.5 2.9354 2.9350 2,943 .08
13,3460 3.3431 3,313 .11
2 4.0289 4.0091 4,116 .23
4 5.0118 4.8903 5.239 .93

TABLE II: A comparison of<A >for & uniformly dis-
tribued between 0 and o,

E
2| is the ratio of the error for the se-

cond hierarchy to the error for the first
hierarchy.

3 TERM 4 TERM
o EXACT 2nd HIERARCHY  PERT. PERT,

.5 B.6848 8.6981 8.17220 8.6803
1 11,4212 11.5096 11,6893 11,2459
2 16.8639 17.4062 18.6238 15,9571
4 26.4776 29.2483 36.4928 15.1595

TABLE IV: A comparison of the second moment of
A for € uniformly distributed between
0 and o,

We see in Table III that the second hierarchy does indeed yield improved
estimates for <A>, in fact, for small a the improvement is considerable,
Unfortunately, the above method suffers from the fact that the approxi-
mations (3.9) and (3.10) are based on a perturbation geries analysis and
hence will not give good results for « large. This is not a typical result
for hierarchy techniques, since in general perturbation series approxima-
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tions are not used in conjunction with hierarchy equations. The results in
Table IV are as we might have predicted, as the second hierarchy yields
estimates for <A 2> which are better than a three term perturbation series
for all @ shown. A four term perturbation series gives better estimates
only for smaller o,

Before discussing an alternate method of arriving at closure assumptions
for the second member of the hierarchy, it should be pointed out that the
main purpose of this section was to obtain improved estimates of <u>(x).
As with all eigenvalue problems, one must first find the eigenvalues, as
we have done, and then use these to determine the eigenfunctions., Thus
far we have obtained improved estimates for <A>, and hence we can use
these in (3.6) through (3.10) to obtain numerical estimates for the ''im-
proved" mean value of u(x). However, due to the relatively crude nature
of the assumptions (3.9) and (3.10), we do not see an improvement over
the first hierarchy estimates for even small values of €.

The assumptions (3.3) and (3.5) are not the only assumptions that can
be made in order to close the infinite hierarchy at the second member,.
There is a second method for arriving at approximations similar to (3.3)
to (3.5) known as the cumulant discard method [5]. Richardson uses this
method to obtain improved results for initial value problems. However,
with slight modifications, - we are able apply the method to stochastic ei-
genvalue problems-also.. Specifically, the cumulant discard method for the
n™ hierarchy neglects the quantity

.
an+l 1 n 0
P r + i ]
5 gl ---3EH3N n < exp (1 & Ej Bj 1uAu>> (3.11)
where the super zero means that the expression is evaluated at E; = O,
i=1, ... n, and £ =0, and Au = u(x) - <u> (x). The expression in (3.11)

is the (n+1)® order cumulant corresponding to the n + 1 random variables
By, ... By, and Au., The cumulant discard method -involves the evaluation
of (3.11) and then setting it equal to zero to obtain an expression for
<BBg ... Bnu> as a linear combination of the lower order moments < u>,
<Bius, <Bgu>, ..., <B; ... By W, with coefficients being various mo-
ments of the B;. The modification we need to use here is that the first
k (O<k<n) of the B; are now set equal to A and the other n-k of the B; are
set equal to €, thus giving us an approximation for <AXe™ y> in terms of
appropriate lower order moments.

As two specific examples we will look at the cases for n = 1 and n = 2.
For n = 1 (3.11) becomes

2 0

2 —s In<exp [iE B, + indu]|>| =<B Auw (3.12)

3% ou

Setting (3.12) equal to zero and recalling that Au = u-<u> we obtain
<B; u> =<B ><ud>. (3.13)
From (3.13) we can obtain both the expressions<Au> = <A><u> and<eu> =
£e><u> by setting B; = X and B; = € respectively, Thus the cumulant dis-
card method yields the same results as we obtaig in section 2 for the
first hierarchy.
Using the same procedure for the case n = 2 we obtain from (3.11)
<€2L1> = L€ Scia>+ 2<e> ceu> -2<E>2<u> (3.14)
when Bl = Bz = ¢ and

KAEUD = <A>KeUD> + <hAe><U> + Cex<AUD>- 2<EXAD> US> (3.15)
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when 3; = A and 85 = €, When 8; = 8o = A, the cumulant discard method
yields the same equation as that given in (3.4)., The question that should
be raised now is whether the expressions (3.14) and (3.15), when used in
the second member of the hierarchy, will yield better or worse results
than when the simpler expressions (3.3) and (3.5) were used. This question
can in part be answered by the fact that both (3.14) and (3.15) can be
shown to be correct through <> terms again using perturbation series.
In fact (3.14) is correct through <e® terms for the special case when ¢
is uniformly distributed. Thus we would again expect to obtain estimates
of <A> (and hence of <u>) which are correct through <e 2> terms when (3.14)
and (3.15) are used. In addition, when € has a distribution with a first
and second moment close to the first and second moment for the uniform
distribution we would expect better results than those obtained previously.
Unfortunately the use of (3.14) and (3.15) in the hierarchy does not alleviate
the fact that the resulting eigenvalue equation contains three parameters,
and hence further calculations were not carried out.

To conclude this section something needs to be said concerning the clo-
sure assumptions necessary to close the hierarchy at higher members.
Theoretically the ground work is all set for using either of the methods
discussed in this section. From a practical point of view, though, the com-
putations will become’ so complicated that it probably would not be worth-
while to consider more members of the hierarchy, especially in view of
the surprisingly good approximations obtained with just one member of the
hierarchy.

4. Higher Moments of the Eigenfunctions

Thus far we have only attempted to find and improve estimates for the
mean value of u(x). If we want to determine directly the second and higher
moments for u(x), we must go back to the original equations:

u"(x) + Au(x)
u(0)

0 .
0 (4.1)
ut (1) + eu(l) = 0

3

LU T |

and derive a hierarchy for the appropriate higher moments. In particular,
for the second moment, multiply each equation of (4.1) by u(x;) and then
find the mean value of each equation., This gives the set of equations

<u(x; Ju)>" + <Aafx)u(x;)>= 0
<ufxi)u(0)>= 0 (4.2)
[(u(xl)u(x)>' + <€u(x1)u(x)>]x 0,

where the prlme differentiation is differentiation with respect to x. The
solutlon to (4.2) is found and then x; is set equal to x to obtain estimates
for <u?> (x). Improvements to the estimates given by (4.2) are found by
writing problems for the two third order moments contained in (4.2).
appears that the same problems arise in the second member of the h1e-
rarchy for <u?> (x) as arose in the second member of the hierarchy for
<u> (x), since the only difference will be that u(x) is replaced by u(x)u(xi).

For the third and higher order moments of u(x) we multiply equations
(4.1) by u(xy)u(xe), u(xji)u(xe)u(xs) etc., to obtain the appropriate hierar-
chies. Rather than deriving these higher order hierarchies in detail, we
will solve (4.2) and show that the estimate for the second moment of u(x)
will .be

<u®(x) =<x>t sin2< A>1/2 (4.3)
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when the appropriate norm is used. The exact second moment is
<u?s(x) =<x-! sin? A2 x>, (4.4)

No numerical comparisons were made of (4.3) and (4.4), but two things
can be noted about (4.3). The estimate as given in (4.3) agrees with that
of (4.4) up to order Le>terms, as predicted. Secondly, if (4.3) is used to
obtain estimates of the variance of u(x), it is found that the estimates will
be zero for all choices of <e€> which agrees with a two term perturbation
series estimate, assuming only linear terms in <e> are kept.

To solve (4.2) we assume that

<au(x)ulx,)> = <a><ux)u(x,)>
and (4.5)
<eu(x, )u(l)>= <e><u(x, Ju(l)>,

which are assumptions similar fo the ones made in the first hierarchy
for <u> (x). Equations (4.5) are also correct to terms involving <e>. Using
(4.5) in (4.2) we obtain

<u(x) uxq)> = Alxy) sin <A>/2 x, (4.6)

where <A> is given by (2.7), To determine A(x;), we can use the sym-
metry of x and x; in (4.2) to obtain

A(x;) = B sin <2 x| (4.7)
so that
<u?(x)> = B gin? <12 g, (4. 8)

To obtain the appropriate normalization condition we begin with
u' (0) = 1, ‘ (4.9)

which is the normalization condition used for the exact solution, Equations
(4.9) implies that

<@)® (0) = 1, (4.10)
which is used to show that
<uB"0) = 2, (4.11)

the required normalization condition arising from (4.9). The above method
can be generalized to show that

4S5 <u™> () = n1 (4.12)

x=0
is the required normalization condition for the n® moment of u(x). Using

(4.11) in (4.8) we obtain the desired results (4.3). By using (4.12) in the
appropriate hierarchies, it can be shown that

<u>(x) = <A gin? <) >1/2 i (4.13)
which gives estimates of the n™ moments up to order <e>terms,

There are two alternate ways to derive estimates for the second mo-
ment of u(x). The first merely solves equations (4.2) using assumptions
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other than (4. 5) while the second derives directly from (4.1) a differential
equation for u?(x). We will look at these methods only briefly, as they
both yield the same estimate as previously found.

If the assumptions

AQux)ulx;)> =< <uEpP><ualxy)>
and (4.14)
<eu(xq)u(l)> = <e><u(xq)u(l)>,

which are correct to order <e»> terms, are made in equations (4.2), we
obtain the set of equations
<u(x;)u(@)> = 0
mn = -
<u(x)u(x)> <)L}<u(x)> <ulxg P> (4.15)
[<ae1)a)> ooy + <or<utiJutt)> = o,
In section 2 we found the estimate <u(x)> = <> M2 gin <A>12 x, when

>tz = -<€> tan YOS Using these in (4.15), with two integrations

yields the estimate (4.3) for <u2> x).
To obtain a problem for u?(x), we multiply equations (4.1) by ufx) to
obtain

u(x) u''(x) + )\uz(x) =0
u2(0) = 0 (4.186)
u(l) u' (1) + €u?(1) = 0.
At this point we recall that
(u?)(x) = 2u(x)u’(x)
and (4.17)

il

(u?)'(x) = 2(u)’(x) + 2u(x) u"(x).

Hence, evaluation of the first equation at x = 1 and the solution of the
second for u(x) u'(x) reduces (4.16) to

<u®''(x) + 2<)\><u2>(x) = 2<u>? (x)
<u?>(0) = 0 (4.18)
<u>'(l) + 2<e><u?>(1) = 0,

after appropriate first order assumptions are made. If estimates of <u> (x)
and <A> are used from previous work then (4.18) may be solved to yield
estimates for <u?> (x), which for this example are the same as (4.3),
those previously obtained,

5., A Brief Consideration of Other Eigenvalue Pyoblems

Now that we have applied hierarchy equation techniques to one particular
problem we would like to investigate whether similar results will be
found for other typical eigenvalue problems. To do this we will look briefly
at an eigenvalue problem which has its random parameter appearing in
the differential equation. If we consider the vibration of a string with a
random density per unit length, then we have the normal modes given by
the equations

"(x) + Ar(x)u(x) = 0
ORI (5-1)

where r(x) is the random density per unit length, This is a more com-
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plicated problem than that previously considered since the random wvariable
is a function of x., For this reason we will mostly discuss the derivation
of the hierarchy and various closure assumptions and not carry out a de-
tailed comparison of the results. In general, after closure assumptions
are made it is necessary to make certain assumptions about <r(x)>,
<r(x)r(x,)>, etc, 'in order to solve the resulting equations. We will not
get into a detailed discussion of these, but where necessary will make use
of some reasonable assumptions.

The first member for the hierarchy for the mean value of u(x) comes
from (5.1) by taking the mean of each equation

u@)>'" + LAar@Eu)> = 0 (5.2)
<u(0)> = <u{l)>» = 0. a
¥ we mﬁltiply (5.1) by Ar(x;) and then average, we obtain the second
member of the hierarehy

AAr(xq)ux)" + <A%r(xq)rx)u(x)> = 0 (5.3)
<Ar(x;)u(0)> = <Ar(x;)u(t)> = 0, :
The higher members are derived in a similar fashion. To close the hie-
rarchy at the first member the simplest assumption to make concerning
the third order moment <Ar(x)u(x)> is

<ar(x)u(x)> = <DO<rxPp<ulx)> , (5.4)
which, when used in (5.2), gives

<ud'" + <OLrxP<u> = 0 5.5
<u> (0) = <u> (1) = 0, (5.5)
Using the appropriate perturbation series it is possible to show that (5.4)
i correct through linear terms in r(x). However, we do not make any
assumptions about the smallness of r(x) in using (5.4). Equations (5.5)
can be solved once appropriate assumptions are made concerning <r(x)>.
If r(x) is assumed to be constant, then the solution to (5.5) is

<u(x)> = B sin 7x

Y & (5. 6)
DA>= T |

which is identical with a one term perturbation series solution under the
same assumptions on <r(x)> [1] .

Before going on to discuss the second member of the hierarchy, it should
be pointed out that other assumptions concerning the third order moment
in (5.2) can be made. They are

<Ar(x)u(x)> = <Ar(x)<u(x)> + <Ao<r{xux)> + <rxpux)> -
2<r (x> <A>Lu(x)>
and (5 7)
<Ar{xju(x)> = <ar(x)><u(x)> + <X <rx)u)> - <rE)><aulx)x
which are exactly the same assumptions as made in the second hierarchy
of the previous example. From before we know that both of (5.7) are cor-

rect through second order terms involving r(x), and hence when used in
(5.2) should give a better approximation than (5.6). Unfortunately, both the
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assumptions in (5. 7) involve the moments <Au(x)y> and <r(x)u(x)y, and hence
when they are used in (5.2) we do not obtain a closed system. It is pos-
sible to write problems for <au(x)> and <r(x)u(x)> which would then give
a consistent system, but the resulting system is even more complicated
than a straight-forward analysis of the second hierarchy, which will also
give estimates valid through second order terms involving r(x).

The second member of the hierarchy involves the fifth order moment
<)\2r(x)r(x yux)>. If we assume that

< Pr(x)r(x; Julx)> = <A <r(x)r(x, P> <a(x)> (5.8)
in (5.3), we obtain the equations

<ar(xup" = - A% <r(x)r(x, )><u(x)>

<Ar(xg)u(0)> = <ir(x,)u(l)> = 0, (5.9)
which along with (5.2) constitute a consistent system for <u(x)>, correct
to second order terms in r(x). Equations (5. 9) can be solved for<ir(x;)u(x)>
in terms of <u(x)>, giving

1
Qr(x;)ux)> = <A2 | Gx,n)<r(n)r (x ><a(n)>dn, | (5.10)
where G(x,n) satisfies
y'= -8 em) (5.11)
y(@) = y(@1) =

Using (5.10) in (5.2) we obtain

1 1 .
<ux)> = <a®> j j G(x, ¢ )G(¢, n)<r(n)r(¢ )><u(n)>dnd (5.12)

as the integral equation satisfied by <u(x)>. Notlce that its solut1on will
give estimates not only of <u(x)> but also of <\%,

To obtain any more information concerning <u(x)>appropr1ate assump-
tions concerning <r(x)r(x; )>must be made. For instance, if <r(x)r(x;)> is
assumed constant, then the estimes given by (5.12) reduce to those of the
first hierarchy, and to the two term perturbation series solution. For more
interesting assumptions about <r(x)r(x;)> the estimates given by (5.12) will
be better than a two term perturbation series estimate, as the assumption
(5.8) is correct to second order terms in r(x). Again it should be menti-
oned that nowhere in the above work have we assumed anything about the
smallness of r(x), hence the above estimates may be expected to yield
results for a wide range of values of r(x). This again is a typical result
for hierarchy techniques.

Other assumptions than (5.8) can be made for the fifth order moment
involved in the second member of the hierarchy by using the techniques
of the previous example. However, these will involve other lower order
moments for which additional equations must be derived, and hence this
will not be a practical method for improvements for this type of problem.
Similar results hold for the higher members of the hierarchy and hence
we will not go into them here,

Thus far we have looked at two distinct types of stochastic eigenvalue
problems. While by no. means are all stochastic eigenvalue problems of
one of these types, these are many that are either of these types or else
can be transformed into one of these types. Hence in conclusion we may
say that hierarchy equations can be successfully applied to linear sto-
chastic eigenvalue problems. In general very good estimates of the mo-
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ments of the eigenfunction and the mean of the eigenvalue are obtained
from the first member of the appropriate hierarchy. In theory improve-
ments to these estimates are always possible, while in practice the cal-
culations may become very complicated for some problems.
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